V2V-PoseNet: Voxel-to-Voxel Prediction Network for Accurate 3D Hand and Human Pose Estimation from a Single Depth Map
نویسندگان
چکیده
Most of the existing deep learning-based methods for 3D hand and human pose estimation from a single depth map are based on a common framework that takes a 2D depth map and directly regresses the 3D coordinates of keypoints, such as hand or human body joints, via 2D convolutional neural networks (CNNs). The first weakness of this approach is the presence of perspective distortion in the 2D depth map. While the depth map is intrinsically 3D data, many previous methods treat depth maps as 2D images that can distort the shape of the actual object through projection from 3D to 2D space. This compels the network to perform perspective distortion-invariant estimation. The second weakness of the conventional approach is that directly regressing 3D coordinates from a 2D image is a highly nonlinear mapping, which causes difficulty in the learning procedure. To overcome these weaknesses, we firstly cast the 3D hand and human pose estimation problem from a single depth map into a voxel-to-voxel prediction that uses a 3D voxelized grid and estimates the per-voxel likelihood for each keypoint. We design our model as a 3D CNN that provides accurate estimates while running in real-time. Our system outperforms previous methods in almost all publicly available 3D hand and human pose estimation datasets and placed first in the HANDS 2017 frame-based 3D hand pose estimation challenge. The code is available in 1.
منابع مشابه
Holistic Planimetric prediction to Local Volumetric prediction for 3D Human Pose Estimation
We propose a novel approach to 3D human pose estimation from a single depth map. Recently, convolutional neural network (CNN) has become a powerful paradigm in computer vision. Many of computer vision tasks have benefited from CNNs, however, the conventional approach to directly regress 3D body joint locations from an image does not yield a noticeably improved performance. In contrast, we formu...
متن کاملTowards Multilevel Human Body Modeling and Tracking in 3D: Investigation in Laplacian Eigenspace (LE) Based Initialization and Kinematically Constrained Gaussian Mixture Modeling (KC-GMM)
Vision-based automatic human body pose estimation has many potential applications and it is also a challenging task. Together, these two factors have made vision-based human body pose estimation an attractive research area with closely related research areas including body pose, hand pose, and head pose estimation. Up to now, these research works however only deal with each task of estimating b...
متن کاملDense 3D Regression for Hand Pose Estimation
We present a simple and effective method for 3D hand pose estimation from a single depth frame. As opposed to previous state-of-the-art methods based on holistic 3D regression, our method works on dense pixel-wise estimation. This is achieved by careful design choices in pose parameterization, which leverages both 2D and 3D properties of depth map. Specifically, we decompose the pose parameters...
متن کاملA CVH-based computational female pelvic phantom for radiation dosimetry simulation
Background: Accurate voxel phantom is needed for dosimetric simulation in radiation therapy for malignant tumors in female pelvic region. However, most of the existing voxel phantoms are constructed on the basis of Caucasian or non-Chinese population. Materials and Methods: A computational framework for constructing female pelvic voxel phantom for radiation dosimetry was performed base...
متن کاملPose Guided Structured Region Ensemble Network for Cascaded Hand Pose Estimation
Hand pose estimation from a single depth image is an essential topic in computer vision and human computer interaction. Despite recent advancements in this area promoted by convolutional neural network, accurate hand pose estimation is still a challenging problem. In this paper we propose a Pose guided structured Region Ensemble Network (Pose-REN) to boost the performance of hand pose estimatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.07399 شماره
صفحات -
تاریخ انتشار 2017